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The creep deformation of the ductile two-phase alloys was analysed on the basis of the 
continuum mechanics model which incorporated the | projection concept proposed by Evans 
and Wilshire. The calculated creep curves were compared with the experimental ones in 
ferrite-pearlite steels. It was found that the continuum mechanics model was able to predict the 
whole creep deformation process of the ductile two-phase alloys from the onset of creep loading 
to the final rupture, if the creep-deformation and creep-rupture data of the individual phases 
which constituted the two-phase alloys were known. A "steady-state creep" in the ductile 
two-phase alloys was predicted by the continuum mechanics model to occur, even if the 
constituent phases did not have the inherent steady-state creep. This was caused by the internal 
stresses arising from the creep-strength difference between second-phase and matrix in the 
two-phase alloys. This steady-state creep was observed in ferrite-pearlite steels during creep at 
873 K. The predicted rupture life on the basis of the continuum mechanics model was correlated 
well with the experimental results in ferrite-peartite steels, although the former was somewhat 
shorter than the latter under higher Creep stresses. The continuum mechanics model was able to 
apply to the life prediction and the creep-strength design of the ductile two-phase alloys. 

1. I n t r o d u c t i o n  
Various kinds of constitutive equations which de- 
scribe the creep deformation (creep curve) of metallic 
materials have been proposed by many investigators 
[1-4]. However, the constitutive equation which can 
simulate the whole creep curve from the onset of creep 
loading to the final rupture has not been known until 
recently. The | projection concept proposed by Evans 
and Wilshire [5] is a successful method which reason- 
ably describes the whole creep curve of materials, and 
is applied to the interpolation and extrapolation of 
creep deformation from existing creep data in metallic 
and non-metallic materials [5, 6]. 

It was shown in the previous study that creep 
deformation in a ductile two-phase alloy can be pre- 
dicted to some extent on the basis of the continuum 
mechanics model from the stress dependence of the 
steady-state creep rate of the constituent phases [7]. 
The continuum mechanics model is capable of 
incorporating any creep law, and is therefore 
applicable to the prediction of the whole creep de- 
formation process in ductile two-phase alloys, if creep 
data of these two phases are obtained. 

In this study, the continuum mechanics model 
which incorporates the | projection concept was 
applied to the prediction of the whole creep 
deformation process in ductile two-phase alloys. The 
results of the calculations based on the model were 
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compared with the experimental results on the 
ferrite-pearlite steels crept at 873 K. The rupture life 
of the two-phase alloys was also predicted on the basis 
of the continuum mechanics model. 

2. C o n t i n u u m  m e c h a n i c s  m o d e l  
2.1. Stresses and creep strains 
The basic equations of stresses and creep strains in 
this study are the same as those shown in the previous 
paper [7]. Let us consider the creep deformation 
of a ductile two-phase alloy, in which the second- 
phase particles with an arbitrary shape and volume 
fraction, f are dispersed in the matrix phase [7]. It is 
assumed in this study that both phases are elastically 
and plastically isotropic, and that creep strains are 
uniform in individual phases (~3 = - 2 ~ ] 1  = - 2 ~ 2  
for the matrix (phase I) and ~ 3  = - 2all1 = - 2a~2 
for the second phase (phase II) under an applied 
tensile stress, c~A3). Components of creep strain 
difference between two phases are zX~33 ( = ~ 3  - ~3), 
A~tl ( =  ~1  -- ~1), and A~2 ( =  ~ 2  - ~ 2  = A~1I). 
Internal stresses arise from the strain difference, A~j. 
The components of internal stresses averaged over the 
matrix, ~ j ,  and these for the second phase, o~}, can be 
calculated by the equivalent inclusion method [8-11] 
and the average internal stress concept [12], and are 
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expressed as 

0"~3 = - -  f A E A g 3 3  

= - f A E x  (la) 

= oL 

-=- . f B E A 8 3 3  

= fBEx  (lb) 

0"n3 = (1 - f ) A E  (2a) 

- (1 -- f ) B E x  (2b) 

where x is A~33 and E is Young's modulus (E = 2p 
x(1 + v), g = rigidity; v = Poisson's ratio). A and 

B are functions of Eshelby's tensor [8-11], elastic 
moduli of the matrix phase (E, ~t and v) and those of 
the second phase (E*, g* and v*). The actual stresses, 
the equivalent stress of von Mises type, 0"~, and the 
deviatoric stress, cy~s, are 

0"% + 

~ 2  

= 0.A 3 - f A E x  (3a) 

= 0.Ii1 

= fBEx  (3b) 

0.1r = cYA 3 - - f (A  + B)Ex 

= 0 .A  3 - -  f g E x  ( 3 c )  

0"33 - -  2 0 " ~ 2  

= - -  20" iI 1 

= (2/3)(oA3 -- fKEx)  (3d) 

for the matrix, and 

+ = 0.% + (1 - f ) A E x  (4a) 

0.~2 = cr]'l - (1 -- f ) B E x  (4b) 

0"~ = crA3 + (1 - f ) K E x  (4c) 

,IT __ 20",  I212 (Y33 

- -  2 0 . ' ~ 1  

= (2/3) [0.' }3 + (1 - f ) K E x ]  (4d) 

for the second phase, where K ( = A + B) is a shape 
factor [7]. The value of shape factor K is (7 - 5v)/ 
[ 1 0 ( t -  vZ)] for the spherical second phase of the 
same elastic moduli as those of the matrix [8]: The 
average creep strain of the two-phase alloy, eu, is 
expressed as 

s u = (1 - f )  a[j + fs[} (5) 

The above equations are also applicable to the 
materials in which the volume fraction of the strong 
phase is large enough to surround the weak phase, if 
we assume that the weak second phase is embedded in 
the strong matrix. 

2.2. Ana lys is  of  creep de fo rma t ion  [7 ]  
The creep deformation of ductile two-phase alloys at 
a current time, t, can be calculated on the basis of the 
continuum mechanics model. If the creep laws for 

both phases are expressed as arbitrary functions, F Z 
11 and F", of equivalent stresses, 0.~e and 0.e, equivalent 

creep strains, ~ and a", etc., at a current time, t, the 
increments of equivalent creep strain, de ~ and de", 
during an infinitesimal time interval, dr, are expressed 
a s  

de I = F l ( o ~ , 8 1 , . . . ) d t  (6a) 

da II = F" (cr~ j, a " , . .  )dr (6b) 

where the equivalent creep strains at a current time, t, 
is given by 

d = de I (7a) 
t = 0 

aH = da" (7b) 
r = 0  

Corresponding increments of creep strains are 

ds[j = (3crl}/20.~e)d~ 1 (Sa) 

da[} ,n ,, n = (30. u/20.~)de (8b) 

Using Equations 6-8, the mean creep rate of the 
two-phase alloy, iu(  = dsu/dt), is given by 

~u = (1 - f)(d~lffdt) + f(dgI}/dt) (s -1) (9) 

2.3. Cons t i t u t ive  e q u a t i o n  
In this study, the 19 projection concept was chosen to 
express the whole creep curves of both second phase 
and matrix phase [5]. Creep strain, ~, and creep rate, ~, 
are given by 

g = 01 [1 - exp( - -  0 2 f ) ]  + 03[exp(0at) -- 1] 

(10) 

= 010a exp( -- 02t) + 0304 exp(04t) (s -1) (11) 

loglo0i  = ai + biT + q0. + diT0. (i -- 1-4) 

(12) 

where ai, b~, el and d~ are constants obtained experi- 
mentally. T and 0. are temperature and stress, 
respectively. Equation 12 is reduced to the following 
equation at a constant temperature. 

loglo0i  = A~ + B i 0 .  (i -- 1-4)  (13) 

where A~ and B~ are constants. The creep strain 
increment, Aa, during a small time interval, At 
(t ~< t ~< t + At), under a constant stress is expressed 
a s  

Ag = ~At (14) 

If the interaction of creep deformation between second 
phase and matrix phase is taken into account, the 
creep rate at time t is expressed as follows by using 
Equations 8, 11 and 13 

a~3 = O~O~exp( - O~t) + O~O~exp(O~t) 

I 1 log1001 = A] + Bi0 .  e 

I A = AI + Bi(~3a - - f K E x )  

(i = t-4) 

(S - 1 )  

(15a) 

(15b) 
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for the matrix and 

| 1  I [  I I  + 03O4exp(e,t) (s -1) (16a) 

loglo@ = A~' + S~'cy~ 

= All + B ~ I [ ~ A  3 

+ (1 --  f ) K E x ]  

(i = l-4) (16b) 

for the second phase, where A[, BI, AII and BI I are 
constants. The creep rate of the alloy, g33, is given by 

= +f~33  (s~-I) (17) 

The creep strain increments in individual phases and 
the whole material during a small time interval, At, are 
expressed as 

A8~3 = a~3 At (lSa) 

Ae~3 = k~3At (18b) 

AS33 = ~33At (18C) 

The increment in creep strain difference between two 
phases, Ax, is expressed as 

Ax = Aa~3 - A~3 (19) 

The value of Ax (and x) is positive when the second 
phase is stronger than the matrix, and is negative 
when the former is the weaker phase. 

2.4. Calculation of creep curves in 
ductile two-phase alloys 

Creep deformation of two-phase alloys can be cal- 
culated by the following procedure on the basis of the 
continuum mechanics model. 

1. The values ofg~3 and ~ 3  are calculated under an 
initial condition of eli = El} = 0 at t =  0, when 
a tensile stress, ~3Aa, is applied (Equations 15 and 16). 

2. Strain increments in both phases, Ag[i and AaI}, 
and in the alloy, ke u, and the increment of strain 
difference, Ax, are obtained from Equations t5, 16, 18 
and 19, provided that the creep rate in each phase is 
constant during a short time interval, At(t ~< t ~< t 
+ At). 

3. Calculated values of these variables are added to 
those of ~s, a lj, ~u and x (at time t), and those values 
(~I~ + Aal> ~ + A~}, ~u + Agu and x + Ax) at the 
time t + At are determined. 

4. Creep rate in each phase at the time t + At is 
calculated on the basis of the creep law (Equations 15 
and 16). 

5. The procedure from 2 to 4 above is repeated until 
the creep strain of the two-phase alloy, $33, reaches the 
fracture strain. 

3. Comparison of calculat ion 
results w i th  experimental  ones 

3.1. Simulation of creep curves by 
continuum mechanics model 

Creep-rupture experiments were carried out using 
carbon steels of ferrite-pearlite structure with various 
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pearlite volume fractions, f, at 873 K in air. All the 
creep specimens were solution heated for 3.6 or 7.2 ks 
in the temperature range 1323-1423K to obtain 
almost the same grain size. These specimens were 
air-cooled to 973 K after solution heating, and then 
furnace-cooled from 973 K to room temperature to 
develop various volume fractions of pearlite. The 
resulting grain size of the specimens was in the range 
72-82 pro. Creep curves of ferrite steel (matrix) and 
pearlite steel (second phase) were simulated by the 
| projection concept. Fig. 1 shows examples of 
experimental creep curves and simulated ones by the 
O projection concept in a ferrite steel and a pearlite 
steel at 873 K. The simulated creep curves agree well 
with the experimental ones in the whole creep 
deformation process. Figs 2 and 3 show the stress 
dependence of 0~ parameters in both ferrite and 
pearlite steels during creep at 873 K when the creep 
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Figure I Examples o f ( , . . )  experimental and ( - - )  simulated 
creep curves by | projection concept in both ferrite and pearlite 
steels at 873 K. 
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Figure 2 The stress dependence of O~ parameters (a, 01; b, 02) in both 
(0)  ferrite and (O) pearlite steels during creep at 873 K. 
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Figure 3 The stress dependence of 0~ parameters (a, 03; b, 04) in 
both (O) ferrite and (�9 pearlite steels during creep at 873 K. 

curves are simulated by the | projection concept. The 
four 0i parameters are given by 

loglo 0~ = - 1.344 + 7.889 x 10 -3  ~ l  e (20a) 

loglo 0~ = - 7.342 + 0.071 86 cy~ (20b) 

log10 0~ = - 2.482 + 4.051 x 10 .3 o'~ (20c) 
loglo 0~, = - 7.287 + 0.06841 c~[e (20d) 

for ferrite steels and 

ii (21a) loglo 0 H = - 2.114 + 5.585 x 10 -3 cy~ 

log~o O n - 6.408 + 0.02481 (y~I (21b) 

logzo 0~ - 1.386 - 0.011 79 erie ~ (21C) 

lOglo O n = - 7.381 + 0.03 744 ~ (21d) 

for pearlite steels. 

0 . 8  �84 

Fig. 4 shows the experimental creep curves and the 
calculated ones based on the continuum mechanics 
model of ferrite-pearlite steels crept under a stress of 
58.8 MPa  at 873 K. The physical constants used in the 
numerical calculations are E = 1.65 x 105 MPa  and 
v = 0.34 [13], and the shape of the minor phase 
(pearlite phase in ferrite matrix or ferrite phase in 
pearlite matrix) is assumed to be spherical. T h e  
continuum mechanics model which incorporates the 
| projection concept can explain the change in creep 
curves with pearlite volume fraction in the 
experimental results, although the results of the 
calculations yield somewhat shorter rupture life 
compared with the experimental ones. Fig. 5 shows 
the stress dependence of the creep ductility 
(elongation) in both ferrite and pearlite steels at 873 K. 
The stress dependence of the elongation, er, is given by 

alr = 0.128 (yo.386 (22) 

for ferrite steels and 

II (3;0.405 ~r = 0.0336 (23) 

for pearlite steels. Therefore, the rule of mixture gives 
a measure of the rupture ductility in ferrite-pearlite 
steels, ar, such that 

~r = (1 - f )  ~1 r -~- fClr I (24) 

The numerical calculations in Fig. 4 were made up to 
the elongation estimated by the above equation. 

Fig. 6 shows the change in the calculated creep rate 
with time in the ferrite-pearlite steel with pearlite 
volume fraction of 0.286 under a stress of 58.8 MPa  at 
873 K. The simulated creep rate by the | projection 
concept for the ferrite steel and the pearlite steel are 
also shown in this figure. The creep rate of the 
ferrite-pearlite steel decreases with time to reach to 
almost constant creep rate, and increases abruptly 
after showing a minimum value, while the creep rates 
of the ferrite steel and the pearlite steel do not exhibit 
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Figure 4 The (- - -) experimental and ( ) calculated creep curves based on the cont inuum mechanics model of ferrite-pearlite steels crept 
under a stress of 58.8 MPa  at 873 K. f = volume fraction of pearlite. 
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Figure 5 The stress dependence of the creep ductility (elongation) in both (O) ferrite and (�9 pearlite steels at 873 K. 
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Figure 6 The change in the calculated creep rate with time in 
a ferrite pearlite steel with pearlite volume fraction, f of 0.286 under 
a stress of 58.8 MPa at 873 K. 

the long steady-state creep. The change in the 
calculated creep rate is also shown for the ferrite 
matrix and the pearlite phase of the ferrite-pearlite 
steel. The creep rate of the ferrite matrix decreases and 
that of the pearlite phase increases with time to the 
"steady-state creep" regime, but the creep rates of both 
phases are the same from the steady-state creep to the 
rupture. Fig. 7 shows the change in the calculated 
creep rate with time in the ferrite-pearlite steels during 
creep at 873 K. As shown in this figure, the calculated 
creep rate of the ferrite-pearlite steels with various 
volume fraction of pearlite exhibited the steady-state 
creep regime under different creep stresses. 

Fig. 8 shows the change in the creep rate with time 
in a ferrite steel, a pearlite steel and a ferrite-pearlite 
steel (pearlite volume fraction, f =  0.286) under a 
stress of 58.8 MPa at 873 K. The experimental results 
indicate that the ferrite-pearlite steel clearly exhibits 
the steady-state creep regime, while both the ferrite 
steel and the pearlite steel do not have a long 
steady-state creep. Fig. 9 shows the change in the 
creep rate with time in ferrite pearlite steels at 873 K. 
The steady-state creep regime was also observed in the 
specimens with various pearlite volume fractions 
under different creep stresses. Thus, the results of the 
calculations (Figs 6 and 7) agree with the experimental 
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Figure 7 The change in the calculated creep rate with time in the 
ferrite-pearlite steels during creep at 873 K. 
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Figure 8 The change in the creep rate with time in a ferrite steel, 
a pearlite steel and a ferrite-pearlite steel (pearlite volume fraction, 
f =  0.286) under a stress of 58.8 MPa at 873 K. 

results shown in Figs 8 and 9. It is interesting to note 
that two-phase alloys exhibit a "steady-state creep", 
even if both second phase and matrix do not have 
inherent steady-state creep. 
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Figure 10 The change in the equivalent stresses of the ferrite matrix 
and the pearlite phase in the ferrite-pearlite steels during creep at 
873 K. (- - ) do, ( ) ~'~'. 

Fig. 10 shows the change in the equivalent stresses 
of the ferrite matrix and the pearlite phase during 
creep at 873 K. The equivalent stress of the ferrite 
matrix, type, decreases and that of the pearlite phase, 

~i increases with time and reaches to the steady-state G'e~ 
values. The equivalent stress of the ferrite matrix in- 
creases and that of the pearlite phase decreases with 
time after the steady state. The difference in the equi- 
valent stresses between two phases is larger in the steel 
with the smaller pearlite volume fraction ( f =  0.286) 
under the same creep stress, and it is larger in the same 
steel under the higher creep stress (78.4 MPa). As 
shown in these figures, the steady-state creep is caused 
by the internal stresses in both second phase and 
matrix arising from the strength difference between 
these two phases. 

3.2. Life prediction by c o n t i n u u m  
m e c h a n i c s  m o d e l  

The continuum mechanics model in this study is 
applicable to the rupture life prediction of two-phase 

O 

10 0 ~ , , , 
0.0 0.2 0.4 0.6 0.8 1.0 

Volume froction of peorlite, f 

Figure 11 The experimental and calculated rupture life in the 
ferrite-pearlite steels crept at 873 K. Stress (MPa): (D) 39.2, ( •  
49.0, (O) 58.8, (O) 68.6, ( ) calculated. 

alloys by using the creep data of two phases which 
constitute the two-phase alloys. Fig. 11 shows the 
experimental rupture life and the calculated one in the 
ferrite pearlite steels crept at 873 K. The calculated 
rupture life was estimated on the basis of the 
continuum mechanics model which incorporates the 
| projection concept. The calculated rupture life was 
obtained as the time when the calculated creep strain 
reached to the rupture ductility (elongation) defined 
by Equation 24. The results of the calculations are 
correlated well with the experimental results, although 
the analytical results give somewhat shorter rupture 
life, especially under the lower stresses. Thus, the rup- 
ture life of two-phase alloys can be predicted by 
the continuum mechanics model from the existing 
creep data of the individual phases which constitute 
the two-phase alloys, although the continuum 
mechanics model does not take into account the 
fracture process, such as the initiation and growth o f  

cracks. 
The continuum mechanics model in this study can 

simulate the whole creep deformation process of the 
ductile two-phase alloys from the onset of creep 
loading to the final rupture. Therefore, the continuum 
mechanics model is also applicable not only to the life 
prediction but also to the creep-strength design of the 
ductile two-phase alloys. 

4. C o n c l u s i o n s  
The creep deformation of the ductile two-phase alloys 
was analysed on the basis of the continuum mechanics 
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model which incorporated the | projection concept 
proposed by Evans and Wilshire. The calculation 
results were compared with the experimental ones in 
ferrite-pearlite steels. The results obtained were 
summarized as follows. 

1. The continuum mechanics model was able to 
predict the whole creep deformation process of the 
ductile two-phase alloys from the onset of creep 
loading to the final rupture from the existing creep 
data of the individual phases which constituted the 
two-phase alloys. The analytical results based on the 
present model correlated well with the experimental 
results in ferrite-pearlite steels. 

2. A "steady-state creep" in the ductile two-phase 
alloys was predicted by the continuum mechanics 
model, even if the constituent phases did not have the 
inherent steady-state creep. The creep rate of the 
ductile two-phase alloys decreased with time to the 
steady state, and then increased abruptly to the final 
rupture. This was caused by the internal stresses 
arising from the creep strength difference between 
two phases in the two-phase alloys. This steady-state 
creep was observed in ferrite pearlite steels during 
creep at 873 K. 

3. The continuum mechanics model revealed that 
in the ductile two-phase alloys the creep rate of the 
ferrite matrix decreased and that of the pearlite 
(second) phase increased with time to a certain value 
of the steady-state creep rate. The model also showed 
that the creep rate of the matrix was the same as that 
of the second phase from the steady-state creep to the 
final rupture. 

4. The predicted rupture life on the basis of the 
continuum mechanics model agreed well with the 
experimental results in ferrite-pearlite steels under 
higher stresses, although the exact fracture process of 
the alloys was not taken into account in the present 

model. The continuum mechanics model was able to 
apply to the life prediction and the creep-strength 
design of the ductile two-phase alloys. 
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